
Intuition: Dynamic Binding

Course
title
fee

 eecs2030

Res.S.

pr
rcs

rs

0 1 9

NonRes.S.

dr
rcsnrs 0 1 9

1.25

0.75

100
2030

s

Visualizing Parent and Child Objects

Testing Student Classes (with inheritance)

Course
title
feec1

Course
title
feec2

Res.S.

pr
rcs

jim

0 1 9

NonRes.S.

dr
rcsjeremy 0 1 9

1.25

0.75

500 500
2030 3311

Recall: Visualizing Parent and Child Objects

Inheritance
Hirarchy

Declaring
Static Types

Runtime
Object
Structure

Intuition: Dynamic Binding

Course
title
fee

 eecs2030

Res.S.

pr
rcs

rs

0 1 9

NonRes.S.

dr
rcsnrs 0 1 9

1.25

0.75

100
2030

s

Visibility: Classes

Visibility: Attributes and Methods

public class Chair {
 private int w;
 int x;
 protected int y;
 public int z;
}

Multi-Level Inheritance Hierarchy: Students

Reflections:
 - For Design 1, how many encodings to check for each method?
 - For Design 2, how many arrays to store for SMS?
 - For Design 3, where are common attributes/methods stored?

Multi-Level Inheritance Hierarchy: Smartphones

Reflections:
 - For Design 1, how many encodings to check for each method?
 - For Design 2, how many arrays to store for SMS?
 - For Design 3, where are common attributes/methods stored?

Multi-Level Inheritance Hierarchy: Smartphones

Exercise Compare the ranges of expectations of:
+ IPhone13Pro
+ HuaweiP50Pro
+ GalaxyS21Plus

A

Inheritance Forms a Type Hierarchy

ancestors expectations descendants

Inheritance Accumulates Code for Reuse

Inheritance Accumulates Code for Reuse

SmartPhone sp1;
IPhone13Pro sp2;
Samsung sp3;

sp1 = ?;
sp2 = ?;
sp3 = ?;

Inheritance Herarchy: Students

Inheritance Herarchy: Smart Phones

Static Types determine Expectations
Declare:
Student jim;
...
jim.??

Declare:
SmartPhone myPhone;
...
myPhone.??

Inheritance Herarchy: Students

Inheritance Herarchy: Smart Phones

Static Types determine Expectations
Declare:
Student jim;
...
jim.??

Declare:
NRS alan;
...
alan.??

Declare:
SmartPhone p1;
...
p1.??

Declare:
Samsung p2;
...
p2.??

A

A oa = …;
? ob = …;
oa = ob;

Rules of Substitutions

Rules of Substitutions (1)

Declarations:
IOS sp1;
IPhoneSE sp2;
IPhone13Pro sp3;

Substitutions:
sp1 = sp2;
sp1 = sp3;

Rules of Substitutions (2)

Declarations:
IOS sp1;
SmartPhone sp2;

Substitutions:
sp1 = sp2;

Rules of Substitutions (3)

Declarations:
IOS sp1;
HuaweiP50Pro sp2;

Substitutions:
sp1 = sp2;

Visualization: Static Type vs. Dynamic Type

Declaration:
Student s;
Substitution:
s = new ResidentStudent(“Rachael”);

Static Type: Expectation
Dynamic Type: Accumulation of Code

Change of Dynamic Type (1.1)

Example 1:
Student jim = new ResidentStudent(...);
jim = new NonResidentStudent(...);

Change of Dynamic Type (1.2)

Example 2:
ResidentStudent jeremy = new Student(...);

Change of Dynamic Type: Exercise (1)

Exercise 1:
Android myPhone = new HuaweiP50Pro(...);
myPhone = new GalaxyS21(...);

Change of Dynamic Type: Exercise (2)

Exercise 2:
IOS myPhone = new HuaweiP50Pro(...);
myPhone = new GalaxyS21(...);

Change of Dynamic Type (2.1)

Given:
Student jim = new Student(...);
ResidentStudent rs = new ResidentStudent(...);
NonResidentStudent nrs = new NonResidentStudent(...);

Example 1:
jim = rs;
println(jim.getTuition());
jim = nrs;
println(jim.getTuition());

Change of Dynamic Type (2.2)

Given:
Student jim = new Student(...);
ResidentStudent rs = new ResidentStudent(...);
NonResidentStudent nrs = new NonResidentStudent(...);

Example 2:
rs = jim;
println(rs.getTuition());
nrs = jim;
println(nrs.getTuition());

Polymorphism and Dynamic Binding
Polymorphism:
An object’s static type may allow multiple possible dynamic types.
⇒ Each dynamic type has its version of method.

Dynamic Binding:
An object’s dynamic type determines the version of method being invoked.

Student jim = new ResidentStudent(...);
jim.getTuition();
jim = new NonResidentStudent(...);
jim.getTuition();

SmartPhone sp1 = new IPhone13Pro(...);
SmartPhone sp2 = new GalaxyS21(...);
sp1.surfWeb();
sp1 = sp2;
sp1.surfWeb();

Recap: Static Types vs. Dynamic Types

C1 v1 = new C3(…);
C2 v2 = new C4(…);
v1.m();
v2.m();
v1 = v2;
v1.m();
v2.m();

Exercises on Eclipse:
+ SMS (variable assignments)
+ Smart Phones (hierarchy + variable assignments)

Static Types and Anticipated Expectations

B obj1 = new A();

A = obj2 = new A();
B obj3 = (B) obj2;

class A {
 void m1() { … }
}
class B extends A { }

class C extends A {}

